Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck.

نویسندگان

  • H Ye Seferyan
  • M B Nasr
  • V Senekerimyan
  • R Zadoyan
  • P Collins
  • V A Apkarian
چکیده

Transient grating measurements affirm the excitonic model for single-walled carbon nanotubes (SWNT) by identifying the dark exciton (D) as the population relaxation bottleneck in semiconducting-SWNT (S-SWNT). The data allow the reconstruction of the kinetics of excitonic cascade and cooling, from band continuum to vibrational cooling in the ground electronic state. In S-SWNT, the intraband relaxation occurs in 40 fs, localization into the 2g exciton occurs in 50 fs, followed by the excitonic cascade: 2g --> 1u --> D --> 1g with time constants of 175 fs, 3 ps, 300 ps, respectively. Fluorescence from the 1u state is quenched by efficient population transfer to 1D dark exciton. In metallic tubes, cooling is completed on the time scale of 1 ps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes.

We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high-sensitivity time-resolved photoluminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small re...

متن کامل

Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.

We show that new low-energy photoluminescence (PL) bands can be created in the spectra of semiconducting single-walled carbon nanotubes by intense pulsed excitation. The new bands are attributed to PL from different nominally dark excitons that are "brightened" because of a defect-induced mixing of states with different parity and/or spin. Time-resolved PL studies on single nanotubes reveal a s...

متن کامل

Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analys...

متن کامل

Cross-polarized excitons in carbon nanotubes.

Polarization of low-lying excitonic bands in finite-size semiconducting single-walled carbon nanotubes (SWNTs) is studied by using quantum-chemical methodologies. Our calculations elucidate properties of cross-polarized excitons, which lead to the transverse optical absorption of nanotubes and presumably couple to intermediate-frequency modes recently observed in resonance Raman excitation spec...

متن کامل

Structure-assigned optical spectra of single-walled carbon nanotubes.

Spectrofluorimetric measurements on single-walled carbon nanotubes (SWNTs) isolated in aqueous surfactant suspensions have revealed distinct electronic absorption and emission transitions for more than 30 different semiconducting nanotube species. By combining these fluorimetric results with resonance Raman data, each optical transition has been mapped to a specific (n,m) nanotube structure. Op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2006